Poisson Multi-Bernoulli Mixture Filter With General Target-Generated Measurements and Arbitrary Clutter
نویسندگان
چکیده
This paper shows that the Poisson multi-Bernoulli mixture (PMBM) density is a multi-target conjugate prior for general target-generated measurement distributions and arbitrary clutter distributions. That is, this model standard dynamic with birth model, predicted filtering densities are PMBMs. We derive corresponding PMBM recursion. Based on result, we implement filter point-target models negative binomial in which data association hypotheses high weights chosen via Gibbs sampling. also an extended target union of Poisson-distributed finite number independent sources. Simulation results show benefits proposed filters to deal non-standard clutter.
منابع مشابه
Poisson multi-Bernoulli mixture filter: direct derivation and implementation
We provide a derivation of the Poisson multiBernoulli mixture (PMBM) filter for multi-target tracking with the standard point target measurements without using probability generating functionals or functional derivatives. We also establish the connection with the δ-generalised labelled multiBernoulli (δ-GLMB) filter, showing that a δ-GLMB density represents a multi-Bernoulli mixture with labell...
متن کاملMulti-Target Tracking Based on Multi-Bernoulli Filter with Amplitude for Unknown Clutter Rate
Knowledge of the clutter rate is of critical importance in multi-target Bayesian tracking. However, estimating the clutter rate is a difficult problem in practice. In this paper, an improved multi-Bernoulli filter based on random finite sets for multi-target Bayesian tracking accommodating non-linear dynamic and measurement models, as well as unknown clutter rate, is proposed for radar sensors....
متن کاملCardinality Balanced Multi-Target Multi-Bernoulli Filter with Error Compensation
The cardinality balanced multi-target multi-Bernoulli (CBMeMBer) filter developed recently has been proved an effective multi-target tracking (MTT) algorithm based on the random finite set (RFS) theory, and it can jointly estimate the number of targets and their states from a sequence of sensor measurement sets. However, because of the existence of systematic errors in sensor measurements, the ...
متن کاملA Study of Poisson Multi-Bernoulli Mixture Conjugate Prior in Multiple Target Estimation
Multiple target tracking (MTT) denotes the process of estimating the set of target trajectories based on a sequence of noise-corrupted measurements including missed detections and false alarms. Nowadays, MTT has found applications in numerous areas, such as air traffic control, autonomous vehicles and robotics, computer vision and biomedical research. In recent years, a significant research tre...
متن کاملMulti-Bernoulli sensor-selection for multi-target tracking with unknown clutter and detection profiles
A new sensor-selection solution within a Multi-Bernoulli-based multi-target tracking framework is presented. The proposed method is especially designed for the general multi-target tracking case with no prior knowledge of the clutter distribution or the probability of detection, and uses a new task-driven objective function for this purpose. Step-by-step sequential Monte Carlo implementation of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Signal Processing
سال: 2023
ISSN: ['1053-587X', '1941-0476']
DOI: https://doi.org/10.1109/tsp.2023.3278944